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Synopsis 

Two novel procedures have been established to estimate the intrinsic viscosity and the 
Huggins constant accurately. It is shown that these numerical methods are superior to the 
existing models, namely the Huggins, Nagy-Kelven-Tudos, and Reilly-Van Der Hoff-Ziogas 
equations. This finding is attributed to the more even distribution of errors in the dependent 
variables of the present analyses. The viscometic data of a poly(viny1 chloride) sample in 
tetrahydrofuran are analyzed by the foregoing five approaches whose accuracies are compared 
in terms of their variances of estimates. 

INTRODUCTION 

Dilute-solution viscometry is a simple and reliable tool for characterizing 
the molecular weights of polymers. This particular method rests on the 
familiar Mark-Houwink-Sakurada equation which relates the viscosity- 
average molecular weight M, to the intrinsic viscosity [q]. A number of 
techniques has been developed to assess the [q] including various single- 
point measurernents,lg2 as well as a semiempirical a p p r ~ a c h . ~  However, [q] 
is conventionally determined by using the Huggins equation4 derived for 
nonelectrolyte polymers and given as 

where qsp is the specific viscosity of the polymer solution of concentration 
C and K is the Huggins constant. Practically we have 

where to and tare  the efflux times of the pure solvent and the dilute polymer 
solution respectively. 

Apparently, a plot of qSp/C vs. C according to eq. (1) yields a straight line 
whose intercept and gradient render the values of [q]  and K, respectively. 
Nevertheless, the results thus obtained are highly biased since the variance 
of the left-hand quantity is not a constant. To the best of our knowledge, 
two suggestions have been but forward so far to overcome this shortcoming. 
Nagy, Kelven, and Tudos (NKTI5 have introduced an improved graphical 
method, whereas Reilly, Van Der Hoff, and Ziogas (RVZY have advanced 
a three-parameter equation for evaluating [q]. In this work, two new pro- 
cedures are proposed to enhance the precision of [q] estimation. 
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LEAST-SQUARES METHOD 

The least-squares analyses of the Huggins, NKT, and RVZ equations are 

The first novel numerical method is based on a quadratic form of eq. (11, 
outlined in the Appendix. 

i.e., 

Hence the variance of the lhs is independent of C which may vary by a 
few folds: 

Solving eq. (3) by the least-squares technique results in 

It can be shown that their respective variances are 

where 

Recently a dependable algorithm which considers the presence of error 
in all variables has been successfully applied to evaluate the monomer 
reactivity ratios in copolymerization.' This error-in-variable method (EVM) 
is now applied to the present study with a minor modification by setting 
V(C) = 0. 
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We first define the residual of efflux time r as the difference between the 
observed and estimated efflux times, i.e., 

r = t - to - tO[q]C - tok[qI2C2 (11) 

The sum of the weighted squares of residual S becomes* 

S = Z Wr2 (12) 

where W is equal to the reciprocal of variance of r, V(r), i.e., 

W = l / V ( r )  (13) 

If the first approximations of [q] and k designated, respectively, by [q]’ and 
k’ are predetermined, then eq. (11) can be expressed by a Taylor series 
truncated after the first power terms of [q] and k to achieve 

S = C[L[q]  + Mk + NI2 (14) 

where 

L = - ( t& + 2tok”q]‘C2)m (15) 

M = - t o [ q ] ‘ 2 C z m  (16) 

N = ( t  - t o  + 2tok’[q] ’2C2)f l  (17) 

w’ = [(2 + [q]’2C2 + k’2[q]’4C2)V(t)]-l (18) 

According to the principle of least-squares the derivatives of S with respect 
to [q] and k must be zero. Hence it furnishes two normal equations which 
lead to the second approximations, 

This data manipulation using eqs. (15) - (20) can be iterated by the recursion 
on [q] and k ,  until they converge to the best estimates [ q ] O  and ko. It follows 
that the variances are 

where Lo, Mo, and No are, respectively, equal to the values of L, M, and N 
computed at [ q ] O  and KO. In the present investigation, the first approxi- 
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mations [q]’ and k’ are estimated by the conventional method using eqs. 
(25) and (26). 

RESULTS AND DISCUSSION 

Detailed information on the viscometric measurements of a commercial 
poly(viny1 chloride) (PVC) sample in tetrahydrofuran (THF) at 25°C has 
been reported by Nagy and c o - ~ o r k e r s . ~  These data are used for the present 
purposes. 

Table I displays the results produced by the methods discussed in the 
preceding section for this particular system. The precision of each estimate 
is indicated by the value of standard deviation, which is the square root of 
variance. 

It is interesting to note that methods 1, 2, and 4 contain three different 
modes of error structure as represented by eqs. (291, (30), and (41, respec- 
tively. Consequently, the estimates of [q] and k from the three methods are 
noticeably different. The quadratic approach which registers the lowest 
standard deviations of [q] and K is therefore the most efficient among them. 
In fact, the conventional and NKT equations are only marginally different 
in predicting the values of the two viscometric parameters as shown in 
Table I. This disapproves the assertion that the latter increases the reli- 
ability of parameters ~onsiderably.~ 

Although eq. (43) has a uniform error distribution, it does not provide 
good results as reflected by its high values of standard deviations. In this 
invariant relationship, the solvent efflux time to is distinctly treated as an  
additional parameter. This means that its residual sum of squares involved 
in the least-squares fitting has a degree of freedom less than the other cases. 
Hence it would affect the precision of predictions and aggravate the esti- 
mated variances of t [eq. (3111 in particular. The value of to computed by 
eq. (46) is equal to 36.894 ss, which agrees remarkably well with the ex- 
perimental figure of 36.903 ss. However, the estimated standard deviation 
of efflux time in this particular case is the highest among the five listed 
methods, indicating that the overall performance of the RVZ model is least 
satisfactory herein. 

TABLE I 
Comparison of Precision of Various Methods for 

Estimating Intrinsic Viscosity and Huggins Constant 

0.018 0.52 0.11 0.026 1 Huggins 1.001 
(conventional) (R = 0.9941Y’ 

2 NKT 

3 PVZ 
4 Quadratic 
5 EVM 

1.003 
(R = l.OOOO)d 0.013 0.51 0.11 0.026 

1.013 0.030 0.46 0.15 0.031 
1.0061 0.011, 0.49, 0.06 0.025 
1.006, 0.010, 0.49, 0.06 0.024 

Standard deviation of [?I. 
Standard deviation of k. 
Standard deviation of t. 
Correlation coefficient. 
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Table I also illustrates that  the EVM method offers the best estimates 
of [q] and k as substantiated by the lowest cr(t). Evidently, this rigorous 
analysis improves the results from the Huggins plot significantly. In ad- 
dition, only two iterations were required to produce these results. If the 
errors in polymer concentration were indispensable, then eq. (18) should 
be replaced by 

W' = [(2 + [q]"C2 + k'2[q]'4C2)V(t) + ([q]" + 4K'2[q]'4C2)toV(C)]-1 (23) 

The variances V(t) and V(C) may be determined by repetition of experi- 
ments if no prior estimates of them are a ~ a i l a b l e . ~  However in most cases 
the V(C) term is of secondary importance6 and as such it can be ignored 
altogether. 

Freeman and Manning'O have cited the Mark-Houwink-Sakurada con- 
stants for PVC in THF at 25°C. Using these data, we show that Mu is equal 
to 8.883 x lo4 from the EVM method, which is merely 0.7% higher than 
that predicted by the Huggins equation. However, this figure of discrepancy 
would have been much higher if the viscometric data had been collected 
from a poorer solvent. 

As expected, the results from the two novel methods are indeed very 
close, since the quadratic equation [eq. (311 has about the same uncertainty 
in qsp [eq. (411 for this particular study. This implies that  if the relative 
viscosity (t/to) is small, then the simple quadratic procedure may be ade- 
quate in this connection. Otherwise, the iterative EVM method must be 
resorted to for the precise estimations of [q] and k. 

In conclusion, it has been demonstrated that the reliability and precision 
of viscometric parameters' estimation are assured by a couple of newly 
introduced procedures. These novel means may be readily adapted to other 
physical parameter evaluations such as the number-average molecular 
weight determination by osmometry and the kinetic rate-constant mea- 
surement by dilatometry." 

APPENDIX 
Since both the Huggins and NKT equations are in the linear forms, they may be generalized 

by 

y = a + b x  (24) 

Accordingly, we have made the following substitutions: For the former, y = ( t  - t,)/t,C, x = 

C, a = [q], and b = k[#; for the latter, y = ( t  - t O ) / C ( ~  - C)t,, x = C / ( T  - C),  a = [ q ] / T ,  

and b = k[qI2  + [ y ] / r ,  where T is equal to the sum of the lowest and highest concentrations 
studied. The linear least-squares analysis of eq. (24) yields 

where the summation refers to a set of n data points hereafter. The variances of a and b are 
computed respectively by 
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Here V( yJ is the variance of yt, written for the Huggins and NKT equations, respectively, as 

where t ,  is the efflux time of polymer concentration C, The variance of efflux time t is assumed 
to be an invariant, i.e., V(t) = V(tJ = V(t& It may be estimated by 

where i is the best estimate t and p is the number of unknown parameters. It is noted that p 
is equal to 2 for all models studied herein except the PVZ method where p = 3. However, 
the variance of C is regarded as vanishingly small, i.e., V(C) = 0 in any case. Finally the 
Huggins equation leads to 

where 

and the covariance of a and b, 

Analogously the NKT equation results in 

v[v] = T2V(U) (37) 

(38) 
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where 

The RVZ equation converts eq. (1) to 

t = t o  + t o  [TI c + tok[7pC' (43) 

where to is regarded as a new parameter to be determined. Now the lhs of the equation is of 
uniform uncertainty. The least-squares solutions of eq. (43) are 

where 

The variances are calculated by 

where the derivatives are obtainable from eqs. (44) - (54). 
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